fetchModuGrinnNetwork

This example shows how to compute a network module correlated to a phenotypic feature and expand the network with information from Grinn internal database

  1. INPUT

    The table summarizes important arguments

    ArgumentValueDescription
    datXdata frame containing normalized-omic dataColumns correspond to entities e.g. genes and rows to samples e.g. normals, tumors. Require 'nodetype' at the first row to indicate the type of entities in each column.
    datPhenodata frame containing phenotypic data e.g. weight, ageColumns correspond to phenotypes and rows to samples e.g. normals, tumors.
    thresholdnumerical value from 0-1The minimum value of similarity threshold, to include edges in the output.
    xToentity type e.g. geneThe network module can be expanded to a specific entity type, by providing a value to xTo

  2. EXECUTE FUNCTION

    Compute a correlation of metabolite module to phenotypic data and expand to a grinn network metabolite-pathway, using information from REACTOME and KEGG only

    
    #1. load metabolomics data from a csv file
    datMet = read.csv("Lung_MET.csv", header=TRUE, row.names=1, stringsAsFactors=FALSE)
    #2. show dimensions of metabolomics data
    dim(datMet)
    #3. show the first 10 rows and 10 columns
    datMet[1:10,1:10]
    
    #!!--- NOTE: The following codes convert kegg ids to grinn ids. If the input data is already the grinn ids, these steps can be skipped.
    grinnID = convertToGrinnID(txtInput=colnames(datMet), nodetype="metabolite", dbXref="kegg") #call grinn function to convert ids
    grinnID = grinnID[!duplicated(grinnID[,1]),] #keep the first mapped id
    colnames(datMet) = lapply(colnames(datMet),function(x) ifelse(length(which(grinnID$FROM_kegg == x))>0,as.character(grinnID$GRINNID[which(grinnID$FROM_kegg == x)]),x))
    #---------- END id conversion ----------#
    
    #4. load phenotypic data from a csv file
    datClin = read.csv("Lung_phenotype.csv", header=TRUE, row.names=1, stringsAsFactors=FALSE)
    #5. show dimensions of phenotypic data
    dim(datClin)
    #6. show the first 10 rows and all columns
    datClin[1:10,]
    #7. execute function
    result <- fetchModuGrinnNetwork(datX=datMet, datPheno=datClin, minModuleSize=5, threshold=0.3, returnAs="tab", xTo="pathway", filterSource=c("REACTOME","KEGG"))
    #8. The heatmap of module-phenotype correlations is present. Observe the heatmap and enter module color(s) seperate by space to the R terminal.
    #Enter module color(s), please separate each color by space: red
    #See below for details.
                  

    The following heatmap is generated as a part of the calculation. Observe and choose a module or combination of modules, then enter module color(s) to the R terminal. In this example, the red module is chosen. The red module contains metabolites that negatively (negative is in blue scale, positive is in red scale) correlating to the phenotype, Final.mg.for.glycomics. The similarity threshold is 0.3 and the pvalue is in parenthesis (0.007).


  3. EXPORT OUTPUT

    Export the network as tab-delimited files to visualize in Cytoscape

    
    write.table(as.matrix(result$edges),"moduleNwEdge.txt",sep="\t",row.names = F, quote = FALSE)
    write.table(as.matrix(result$nodes),"moduleNwNode.txt",sep="\t",row.names = F, quote = FALSE)
                  
  4. VISUALIZATION

    The figure is generated by Cytoscape 3.1.1 using grinn style (grinn.xml). It is corresponding to the cytoscape file moduleNw.cys.


  5. Diagram legend


References

Correlation-based analyses apply methods from the following publications:

Metabolomics data used in this example are taken from the following publication:

Go to HOME | Documentation | fetchGrinnNetwork | fetchCorrGrinnNetwork | fetchDiffCorrGrinnNetwork | fetchModuGrinnNetwork | fetchGrinnCorrNetwork | input formats