fetchCorrGrinnNetwork

This example shows how to compute a weighted correlation network and expand the network with information from Grinn internal database

  1. INPUT

    The table summarizes important arguments

    ArgumentValueDescription
    datXdata frame containing normalized-omic dataColumns correspond to entities e.g. genes and rows to samples e.g. normals, tumors. Require 'nodetype' at the first row to indicate the type of entities in each column.
    datYdata frame containing normalized-omic dataIt uses the same format as datX. Or it can be NULL, if there is only one omic dataset
    corrCoefnumerical value from 0-1The minimum absolute correlations to include edges in the output
    pvalnumerical valueThe maximum pvalues, to include edges in the output
    xToentity type e.g. metaboliteThe correlation network can be expanded from datX entites to a specific entity type, by providing a value to xTo
    yToentity type e.g. geneThe correlation network can be expanded from datY entites (if not NULL) to a specific entity type, by providing a value to yTo

  2. EXECUTE FUNCTION

    Compute a correlation network of metabolites and genes and expand to the grinn network of metabolite-protein and gene-pathway

    
    #1. load metabolomics data from a csv file
    datMet = read.csv("Lung_MET.csv", header=TRUE, row.names=1, stringsAsFactors=FALSE)
    #2. use only a subset of metabolomics data
    datMet = datMet[c(1:7,42:50),]
    #3. show dimensions of metabolomics data
    dim(datMet)
    #4. show the first 10 rows and 10 columns
    datMet[1:10,1:10]
    
    #!!--- NOTE: The following codes convert kegg ids to grinn ids. If the input data is already the grinn ids, these steps can be skipped.
    grinnID = convertToGrinnID(txtInput=colnames(datMet), nodetype="metabolite", dbXref="kegg") #call grinn function to convert ids
    grinnID = grinnID[!duplicated(grinnID[,1]),] #keep the first mapped id
    colnames(datMet) = lapply(colnames(datMet),function(x) ifelse(length(which(grinnID$FROM_kegg == x))>0,as.character(grinnID$GRINNID[which(grinnID$FROM_kegg == x)]),x))
    #---------- END id conversion ----------#
    
    #5. load transcriptomics data from a csv file
    datGene = read.csv("Lung_GENE.csv", header=TRUE, row.names=1, stringsAsFactors=FALSE)
    #6. show dimensions of phenotypic data
    dim(datGene)
    #7. show the first 10 rows and 10 columns
    datGene[1:10,1:10]
    #8. execute function
    result <- fetchCorrGrinnNetwork(datX=datMet, datY=datGene, corrCoef=0.7, pval=1e-6, method="spearman", returnAs="tab", xTo="protein", yTo="pathway")
    #display the first 10 edgelists
    result$edges[1:10,]
                  
  3. EXPORT OUTPUT

    Export the network as tab-delimited files to visualize in Cytoscape

    
    write.table(as.matrix(result$edges),"corrNwEdge.txt",sep="\t",row.names = F, quote = FALSE)
    write.table(as.matrix(result$nodes),"corrNwNode.txt",sep="\t",row.names = F, quote = FALSE)
                  
  4. VISUALIZATION

    The figure is generated by Cytoscape 3.1.1 using grinn style (grinn.xml). It is corresponding to the cytoscape file corrNw.cys.


  5. Diagram legend


References

Metabolomics and transcriptomics data used in this example are taken from the following publication:

Go to HOME | Documentation | fetchGrinnNetwork | fetchCorrGrinnNetwork | fetchDiffCorrGrinnNetwork | fetchModuGrinnNetwork | fetchGrinnCorrNetwork | input formats